ГБПОУ «СМГК»

Контрольные упражнения

по органической химии для студентов специальностей: 34.02.01«Сестринское дело», 31.02.02 «Акушерское дело», 33.02.01 «Фармация», 31.02.03 «Лабораторная диагностика»

Составитель: Омариева Д.О.

Контрольные упражнения

по органической химии для студентов специальностей: 34.02.01 «Сестринское дело», 31.02.02 «Акушерское дело», 33.02.01 «Фармация», 31.02.03 «Лабораторная диагностика»

Рассмотрено и одобрено на заседании ЦМК «Фармации и лабораторной диагностики»

Введение

Для проверки знаний учащихся и при организации самостоятельной работы можно использовать тестовые задания с избирательными ответами. Они развивают не только мышление студентов, но и серьезный анализ решаемых задач. Студенты могут использовать такие мыслительные операции, как анализ, синтез, сравнение, вычленение главных признаков, опираться на опорные знания, чтобы в результате найти те, в которых заложены наиболее важные признаки какого-либо действия, отклонив другие, в которых заложена неполная и неверная информация.

УГЛЕВОДОРОДЫ

Предельные углеводороды (алканы) и их галогенопроизводные

Вариант 1

- 1. Какой тип реакции характерен для свойств алканов обусловленных σ-связью С—H: а) замещения, б) соединения в) обмена, г) разложения?
- 2) Как правильно назвать хлорпроизводный углеводород разветвленного (изомерного) строения

$$C_2H_5$$
— $CHCl$ — CH_2 — CH — CH_2 — CH_3

СНз

- а) дихлоризогептан, б) 2-метилгептан-дихлор, в) 3-метил-5-хлоргексан, г) 3-хлор-5-метилгептан?
- 3. Какой объем оксида углерода (IV) (н.у.) выделяется при горении пропана объемом 10 л: а) 10 л, б) 20 л, в) 30 л или г) 40 л?

- 1. Сколько молей оксида углерода (IV) образуется при сгорании этана массой 90 г: а) 5 моль, б) 6 моль, в) 10 моль или г) 12 моль?
- 2. Чем по отношению друг к другу являются вещества пропан и н-декан, а также 2-метил-3-хлорпентан и 2-метил-3-хлор-гексан: а) изомерами, б) гомологами, в) хлорпроизводными, г) углеводородами нормального строения?
- 3. Чем объяснить, что углерод, имеющий в стационарном состоянии электронное строение

атома	$1s^2 2s^2$	$^{2}2p^{2}$,	прояв	ляет	В	орга	ниче	ских
соедине	ХRИН	вален	тность	4:	a)	гибри	диза	цией
электрон	ных	облак	ов ат	ома	угле	рода,	б)	sp^3
гибриди	зациеі	й, в)	спа	риван	нием	несі	парен	ных
электрон	нов, г) обра	зовани	ем ч	етыр	ех хи	миче	ских
(ковален	тных)	связей	í?					

Химические свойства предельных углеводородов. Изомерия

Вариант 1

- 1. С какого углеводорода в ряду алканов начинается изомерия:
- а) с метана, б) с бутана, в) с этана, г) с пентана? Сколько должно быть минимально атомов углерода для этого: а) один, б) два, в) четыре, г) пять?
- 2. Чем различаются изомеры: а) химическими свойствами, б) химической активностью, в) физическими свойствами, г) химическим строением?
- 3. Какие из перечисленных свойств характерны для метана:
- а) горение, б) изомеризация, в) каталитическое окисление, г) гидрирование?

- 1. Как очистить метан от примеси оксида углерода (IV):
- а) сжечь, б) пропустить смесь через известковую воду, в) добавить хлор и облучить

ультрафиолетовыми лучами, г) добавить воду?

- 2. Чем отличается одновалентный радикал метана от молекулы метана:
- а) имеет неспаренный электрон, б) является нейтральной частицей, в) нереакционноспособный, г) реакционноспособный?
- 3. На каком свойстве метана основано получение из него элементарного углерода (сажи): а) на реакциях замещения, б) на способности гореть, в) на процессе крекинга, г) на реакциях синтеза?

Непредельные углеводороды ряда этилена (алкены)

- 1. Чем отличаются друг от друга бутен-1 и бутен-2: а) числом атомов углерода, б) местом разветвления углеродной цепи, в) местом расположения двойной связи, г) относительной молекулярной массой?
- 2. Укажите, какие из веществ обесцвечивают раствор перманганата калия и бромную воду:

- 3. Определите объем водорода (н.у.), необходимый для реакции присоединения его к пропену объемом 15 л (на катализаторе):
 - а) 5 л, б) 15 л, в) 25 л или г) 50 л.

- 1. Какие частицы участвуют в образовании π -связи в молекуле этилена: а) негибридные рэлектроны, б) один p- и два s-электрона, в) sp²-гибридные электронные облака, г) два s-электрона?
- 2. Почему невозможно свободное вращение атомов углерода вокруг л-связи в отличие от вращения вокруг о-связей: а) π-связь более реакционноспособна, б) не позволяет пространственное расположение π-связи ПО отношению к плоскости молекулы, в) при вращении может разрушиться π-связь, г) π-связь расположена в перпендикулярной плоскости по отношению к освязи?
- 3. Каков состав (в % по объему) смеси. 20 л бутана и бутена, если эта смесь реагирует с бромом массой 71,42 г: а) 50 и 50%, б) 5 и 95%, в) 25 и 75%, г) 90 и 10%?

Диеновые углеводороды (алкадиены). Каучук

Вариант 1

- 1. Какая из общих формул соответствует гомологическому ряду алкадиенов:
 - a) C_nH_{2n+2} B) C_nH_{2n-2}

- σ) C_2H_{2n} σ) C_nH_{n-2} ?
- 2. Укажите, какие из приведенных веществ являются изомерами по отношению друг к другу:
 - a) CH₂=C(CH₃)—CH=CH₂ в) CH₃—CH₂—CH₃
- б) CH₂=CH—CH₂—CH₃ г) CH₂=CH—CH₂— CH=CH₂
- 3. Какой объем воздуха (н.у.) необходим для сжигания пропадиена объемом 3 л: а) 12 л, б) 24 л, в) 60 л или г) 120 л?

- 1. Чем отличается бутадиеновый каучук СКБ от дивинилового СКД:
- а) СКД стереорегулярен, б) СКВ стереорегулярен, в) СКД более эластичен и термостоек, г) СКБ более эластичен и термостоек?
- 2. Какие из свойств диенов обусловлены наличием л-связи в молекулах: а) подвергаются фотохимическим реакциям, б) образуют свободные радикалы, в) полимеризуются, г) окисляются слабыми окислителями?

3. Сколько карбоната натрия (в молях) можно							
получить, пропуская продукты сгорания мономера							
бутадиенового каучука количеством вещества 10							
моль через достаточное количество раствора							
гидроксида натрия: а) 1 моль, б) 4 моль, в) 10 моль							
или г) 40 моль?							

Ацетиленовые углеводороды (алкины)

Вариант 1

- 1. Какая общая формула соответствует гомологическому ряду ацетиленовых углеводородов (алкинов): а) C_nH_{2n} , б) C_nH_{2n+2} в) C_nH_{2n-2} , г) C_nH_{2n-6} ?
- 2. Как отличить ацетилен от бутана: а) по способности обесцвечивать бромную воду, б) гореть бесцветным пламенем, в) обесцвечивать раствор перманганата калия, г) образовывать взрывоопасные смеси с воздухом?
- 3. Сколько литров ацетилена (н.у.) выделится, если в избытке воды растворить технический карбид кальция массой 50 г, содержащий в массовых долях 0,36 примесей: а) 33,6 л, б) 22,4 л, в) 11,2 л или г) 5,6 л?

- 1. Какой общей формуле соответствует пентин: а) C_nH_{2n-6} б) C_nH_{2n-2} в) C_nH_{2n} г) C_nH_{2n+2} ?
- 2. Сколько массовых долей примесей содержится в техническом карбиде кальция, если известно, что при растворении его образца массой 20 г выделяется 6,3 л ацетилена (н.у.): а) 0,9, б) 0,8, в)

$0,1, \Gamma) 0,3?$

- 3. Какими реактивами и как можно отличить ацетилен от этилена:
- а) бромной водой, б) аммиачным раствором оксида серебра, в) раствором перманганата калия, г) характером пламени, образовавшимся при горении?

Ароматические углеводороды (арены)

Вариант 1

- 1. Какая общая формула соответствует гомологическому ряду аренов:
- a) C_nH_{2n} , б) C_nH_{2n-2} , в) C_nH_{2n-6} , г) C_nH_{2n+2} ?
- 2. Какая масса 2%-ной бромной воды может прореагировать с толуолом массой 1,84 г: а) 120 г, б) 240 г, в) 480 г или г) 960 г?
- 3. При нитровании бензола массой 117 г получено 180 г нитробензола. Сколько это составляет от теоретического выхода:
 - а) 9,76%, б) 19,52%, в) 48,78% или г) 97,56%?

- 1. Какие данные соответствуют строению бензола и его гомологов:
- а) шестичленный цикл углеродных атомов, ароматическая связь,
- б) sp^3 -гибридизация, тетраэдрическая форма молекул, в) sp^2 -гибридизация, плоская форма молекул, г) открытая цепь углеродных атомов, sp^2 -гибридизация?

- 2. Для нитрования 0,2 моль толуола потребовалось 50 г 94,6%-ной азотной кислоты. Какова масса образующегося продукта: а) 45,4 г, б) 22,7 г, в) 90,8 г или г) 15,13 г?
- 3. При помощи каких реактивов можно распознать бензол и винилбензол: а) раствором перманганата калия и бромной водой, б) нитрующей смесью и бромной водой, в) бромной водой и раствором нитрата серебра, г) раствором перманганата калия и известковой водой?

Природные источники углеводородов (природные газы, нефть, уголь)

- 1. Какие основные направления промышленной переработки природного газа: а) топливо, источник энергии, б) получение парафинов, в) химическое сырье для получения полимеров, г) получение органических растворителей?
- 2. Какие химические методы используются для вторичной переработки нефти: а) крекинг, б) сжигание, в) перегонка, г) изомеризация на катализаторе?
- 3. Сколько молей метана потребуется для получения разложением такого объема водорода, которого будет достаточно для полного гидрирования бензола массой 156 г: а) 30 моль, б) 40 моль, в) 3 моль, г) 4 моль?

Вариант 2

- 1. Какие высокомолекулярные соединения получают на основе промышленной переработки природного газа: а) пластмассы (ПЭ, ПП, ПВХ), б) волокна (нитрон, лавсан), в) растворители (дихлорэтан, трихлорэтен), г) синтез-газ (конверсией метана водяным паром)?
- 2. Источником каких углеводородов является каменноугольная смола: а) предельных, б) непредельных, в) ароматических, г) циклических (циклоалканов)?
- 3) Какой объем природного газа, в котором 96% метана, можно сжечь в воздухе объемом 960 м³: а) 200 m^3 , б) 100 m^3 в) 10 m^3 или г) 400 m^3 ?

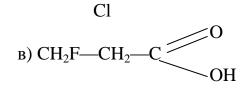
Альдегиды. Фенол *Вариант 1*

- 1. Какие основные области использования формальдегида: а) для получения фенолформальдегидных смол, б) в качестве дезинфицирующего вещества, в) для получения сложных эфиров, г) в медицине как дубящее вещество?
- 2. Какой объем природного газа, в котором 95% метана, необходим для образования такой массы муравьиного альдегида, из которого можно получить 9,2 г муравьиной кислоты: а) 2,35 л, б) 4,7 л, в) 9,4 л, г) 18,8 л?
 - 3. Почему фенол проявляет кислотные

свойства: а) сказывается влияние бензольного кольца на гидроксогруппу, б) влияние гидроксогруппы на бензольное кольцо, в) атом водорода гидроксогруппы приобретает большую подвижность за счет смещения неподеленной электронной .пары атома кислорода к бензольному кольцу, г) фенол может диссоциировать, как все кислоты?

- 1. Какая масса 60%-ного раствора гидроксида натрия потребуется для взаимодействия с фенолом, полученным из бензола объемом 200 мл (плотность 0.8 г/см^3): а) 136.7 г, б) 68.35 г, в) 34.18 г или г) 45.56 г?
- 2. При помощи каких групп реактивов можно определить бензол, фенол, гексен, если даны: а) щелочь, раствор лакмуса, йодная вода, б) раствор щелочи, раствор перманганата калия, соляная кислота, в) раствор хлорида железа (III), бромная вода, нитрирующая смесь, г) нитрующая смесь, соляная кислота, вода?
- 3. Как получить ацетальдегид в лаборатории: а) сухой перегонкой древесины, б) окислением этанола оксидом меди (II), образовавшимся на медной спирали, в) кипячением этанола с концентрированным раствором дихромата калия, г) при смешивании этилового спирта со слабым раствором перманганата калия?

Спирты. Альдегиды. Карбоновые кислоты Вариант 1


- 1. Какие группы веществ можно распознать при помощи свежеосажденного гидроксида меди (II) и раствора лакмуса: а) глицерин, фенол, этиловый спирт, б) глицерин, формальдегид, фенол, в) глицерин, формальдегид, этиловый спирт, г) глицерин, ацетальдегид, уксусную кислоту?
- 2. При взаимодействии 20%-ного раствора уксусной кислоты массой 120 г с метиловым спиртом образовался сложный эфир (метилацетат) массой 29,6 г. Какая масса метанола вступила в реакцию: а) 6,4 г, б) 12,8 г, в) 3,2 г или г) 9,6 г?
- 3. Как правильно назвать вещество, имеющее формулу

а) 2-хлор-4-ол-валериановая кислота, б) 2-хлор-4-ол-пентановая кислота, в) 2-хлор-4-оксивалериановая кислота, г) α -хлор- γ -оксивалериановая кислота?

Вариант 2

1. Укажите, у какой кислоты наибольшая степень диссоциации:

- a) CCl₃—CH₂—CH₂—COOH
- б) CH₃—CH—COOH

г)
$$CH_2F$$
— C ОН

- 2. При взаимодействии пропионовой кислоты массой 100 г с 14%-ным раствором гидроксида калия массой 400 г образовалась калиевая соль массой 89,6 г (что составляет 80% от теоретического выхода). Сколько массовых долей кислоты прореагировало: а) 0,74,6) 0,82, в) 0,406 или г) 0,88?
- 3. С помощью каких реактивов можно определить альдегидную группу: а) йодной водой и раствором щелочи, б) бромной водой, в) аммиачным раствором оксида серебра, г) раствором хлорида железа (III)?

Высшие предельные кислоты. Мыла Вариант 1

- 1. Чем объяснить, что высшие предельные кислоты нерастворимы в воде: а) не диссоциируют, имеют сложный кислотный остаток, б) не образуют ионы гидроксония, в) имеют длинный радикал из неразветвленной цепи атомов углерода, г) имеют длинный радикал из большого числа неполяризованных атомов?
- 2. Сколько кальцинированной соды потребуется для реакции со стеариновой кислотой массой 28,4 г и сколько соответственно образуется стеарата натрия при 90%-ном выходе: a) 5,3 г и 17,2 г, б) 7,2 г и 27,54 г, в) 10,6 г и 17,2 г или г) 5,3 г и 27,54 г?
- 3. На каком химическом свойстве основано применение стеарата натрия в качестве мыла: а) подвергается гидролизу, образуя щелочную среду раствора, б) дает коллоидный раствор, в) подвергается гидролизу, образуя кислотную среду, г) является поверхностно-активным веществом (ПАВ), способствующим смачиванию всех материалов и предметов в водном растворе (за счет ослабления пленки поверхностного натяжения воды)?

Вариант 2

1. Почему мыло утрачивает свои моющие свойства в жесткой воде: а) образуются нерастворимые соли кальция, б) мыло реагирует с солями кальция, в) полученные при гидролизе мыла

стеаратионы соединяются с ионами кальция в недиссоциирующие вещества, г) не образуется пена, нет эмульгатора?

- 2. При взаимодействии щавелевой кислоты НООС—СООН массой 180 г с 20%-ным раствором гидроксида натрия массой 400 г образовалось 224 г соли. Какая это соль средняя или кислая и почему: а) прореагировала только одна карбоксогруппа в молекуле кислоты, так как щелочь взята в недостатке соль кислая, б) кислота полностью нейтрализована щелочью, так как щелочь взята в избытке соль средняя?
- 3. Какие из групп кислот относятся к многоосновным: а) уксусная CH_3COOH , бензойная C_6H_5COOH , серная H_2SO_4 , б) ортофосфорная H_3PO_4 , щавелевая (COOH)₂, адипиновая HOOC—(CH_2)₄— COOH, в) стеариновая $C_{17}H_{35}COOH$, угольная H_2CO_3 , акриловая CH_2 ==CH—COOH, г) соляная HC1, янтарная HOOC—(CH_2)₂COOH, олеиновая $C_{17}H_{33}COOH$?

Сложные эфиры. Жиры Вариант 1

- 1. Какая реакция лежит в основе получения сложных эфиров:
- а) гидратация, б) этерификация, в) дегидратация, г) дегидрогенизация?
- 2. Укажите, какая из схем соответствует щелочному гидролизу (омылению) сложных эфиров, и составьте уравнение реакции:
 - a) CH_3 —CH== CH_2 +NaOH \rightarrow
 - б) CH_3 —CH==CH— $COOCH_3$ +KOH \rightarrow
 - B) $C_{15}H_{31}COOK+H_2O \longrightarrow$
 - Γ) CH₃—CO—0—CO—CH₃+NaOH \rightarrow
- 3. При реакции этерификации прореагировал 80%-ный раствор метилового спирта массой 30 г и метакриловая кислота $CH_2 == C(CH_3)$ —COOH количеством вещества 0,6 моль. Какова масса полученного эфира (метилметакрилата): а) 120 г, б) 30 г, в) 40 г или г) 60 г?

- 1. Какие продукты образуются при гидролизе пропионово-пропилового эфира в присутствии гидроксида натрия:
 - a) CH₃—CH₂—ONa и CH₃—CH₂—COONa.
 - б) CH₃—CH₂—ONa и CH₃—CH₂—COOH.
 - в) CH₃—CH₂—OH и CH₃—CH₂—COOH.
- г) CH₃—CH₂—CH₂—OH и CH₃—CH₂— COONa?
 - 2. Какова масса продукта реакции (при 80%-

ном выходе), полученного при взаимодействии 40%ного раствора уксусной кислоты объемом 240 мл (плотность 1,05 г/см³) и 90%-ного метанола объемом 120 мл (плотность 0,7 г/см³): а) 99,45 г, б) 66,03 г, в) 48,8 г или г) 52,7 г?

- 3. В химическом стакане находится жидкость с характерным запахом; в воде она растворяется плохо, но хорошо растворяется в щелочи, реагируя с ней, не изменяет окраску раствора лакмуса и раствора перманганата калия. О каком веществе идет речь:
- а) об альдегиде, б) простом эфире, в) сложном эфире, г) кислоте?

Углеводы

Вариант І

- 1. В каких гибридных состояниях находятся атомы углерода в глюкозе: а) в sp^3 б) sp^2 в) sp г) s^2p ?
- 2. Какой объем оксида углерода (IV) (н.у.) выделится при спиртовом брожении глюкозы количеством вещества 5 моль:
 - а) 2,24 л, б) 22,4 л, в) 224 л или г) 2240 л?
- 3. Для чего применяется сахароза: а) как питательное вещество, б) сырье для получения уксусной кислоты, в) для получения крахмала, г) для получения глюкозы?

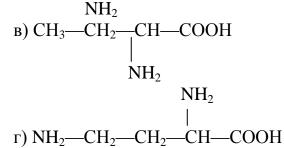
Вариант 2

- 1. Какие продукты образуются в результате окисления глюкозы аммиачным раствором оксида серебра: а) глюконовая кислота и вода, б) глюкосахарат серебра и вода, в) спиртокислота и металлическое серебро, г) многоатомный спирт и вода?
- 2. Какой объем воздуха (н.у.) необходим для полного окисления глюкозы количеством вещества 5 моль: а) 3360 л, б) 336 л, в) 33,6 л или г) 3,36 л?
- 3. Какие из перечисленных веществ являются изомерами по отношению друг к другу: а) глюкоза и мальтоза, б) глюкоза и фруктоза, в) крахмал и целлюлоза, г) мальтоза и сахароза?

Амины. Анилин

- 1. Какой объем воздуха (н.у.) необходим для сжигания метиламина объемом 8 л: a) 18 л, б) 90 л, в) 45 л или г) 8 л?
- 2. Какие из реакций можно осуществить на практике: а) оксид калия + бензол, б) анилин+гидроксид натрия, в) азотная кислота+фениламин,
- г) метиламин+водород?
- 3. Какое из оснований более сильное и чем это объяснить:
- а) этиламин, так как легче присоединяется протон к неподеленной электронной паре атома

азота, б) фениламин (анилин), так как легко реагирует с соляной кислотой (бензольное кольцо оттягивает электронную пару), в) этиламин, в связи с тем что этильный радикал смещает электронную плотность на атом азота, г) фенил-амин, который слабее притягивает протон к неподеленной электронной паре атома азота?


- 1. Какую реакцию на индикатор показывают амины жирного ряда: а) кислотную, б) нейтральную, в) щелочную, г) не влияют на индикатор?
- 2. Какая реакция лежит в основе получения анилина в промышленности: а) нитрования (реакция Коновалова), б) дегидратации (реакция Зайцева), в) восстановления (реакция Зинина), г) гидратации (реакция Кучерова)?
- 3. Какая масса 8%-ного раствора брома необходима для реакции с анилином массой 18,6 г: а) 1200 г, б) 120 г, в) 240 г или г) 24 г?

Аминокислоты

Вариант 1

- 1. Почему аминокислоты являются амфотерными веществами:
- а) имеют амино- и карбоксильные группы, б) за счет функциональных групп реагируют как с кислотами, так и со щелочами, в) относятся к азотсодержащим, г) реагируют с водой?
- 2. Какой объем 90%-ного метанола (плотность $0.8~\Gamma/\text{см''}$) необходим для реакции с аминоуксусной кислотой количеством вещества 2 моль: а) 22,2 мл, б) 44,4 мл, в) 66,6 мл или г) 88.8 мл?
- 3. Как при помощи раствора лакмуса отличают аминоуксусную кислоту (гликокол) от метиламина: а) раствор лакмуса становится красным в растворе гликокола, б) раствор лакмуса синеет в растворе метиламина, в) раствор лакмуса остается фиолетовым в растворе гликокола, г) раствор лакмуса приобретает красный цвет в растворе гликокола?

- 1. Какой цвет будет у раствора лакмуса в растворе глутаминовой кислоты HOOC— $(CH_2)_2$ — $CH(NH_2)$ —COOH: а) красный, б) синий, в) фиолетовый, г) не изменяется?
- 2. Укажите вещества, которые являются изомерами аминомасляной кислоты:
 - a) NH₂—CH₂—CH₂—COOH
 - б) СН₃—СН—СН₂—СООН

3. Какой объем аммиака потребуется для реакции с хлоруксусной кислотой массой 18,9 г (реакцию с группой —СООН исключить): а) 3,36 л, б) 4,48 л, в) 2,24 л или г) 1,12 л? Какой объем воздуха, содержащий 78% азота (по объему), необходим для синтеза требующегося объема аммиака: а) 3,74 л, б) 4,87 л. в) 5,74 л или г) 2,87 л?

Кислород- и азотсодержащие органические вещества

- 1. С какими из названных веществ может реагировать бромоводород (н.у.): а) с метаном, б) изобутиленом, в) этанолом, г) гликоколом?
- 2. Сколько изомеров нециклического строения может быть у соединения $C_3H_6O_2$: а) четыре, б) три, в) шесть, г) семь?
- 3. Сколько граммов CH_3 —CO— CH_3 образуется при окислении пропанола-2, полученного гидратацией 11,2 л пропилена (н.у.), если выход спирта составил 80% от теоретического: а) 17,8 г, б) 20,2 г, в) 18,4 л или г) 23,2 г?

- 1. Из 200 г нитробензола было получено 130 г анилина. Какой это составляет практический выход: а.) 44%, б) 66%, в) 86% г) 77%?
- 2. Какие вещества можно определить свежеосажденным гидроксидом меди (II): а) глицерин, б) этанол, в) пропанон-2, г) ацетальдегид?
- 3. Какое из веществ лучше растворяется в воде: а) $C_6H_5NH_2$, б) CH_3 — NH_2 , в) NH_3 , г) NH_4C1 ?

Литература.

- 1. Общая химия. Шилов Ю.М., Тарасенко М.И., Смушкевич Ю.И., Чукуров П.М. М.: Медицина, 2009г, 384с.
- 2. Г.П.Хомченко, И.Г.Хомченко. Сборник задач по химии для поступающих в вузы. М.:Новая волна, 2012г,278с.